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ABSTRACT Prior quasielastic light scattering (QLS)
studies of fibrillogenesis of synthetic amyloid b-protein (Ab)-
(1–40) at low pH have suggested a kinetic model in which: (i)
fibrillogenesis requires a nucleation step; (ii) nuclei are
produced by Ab micelles in addition to seeds initially present;
and (iii) fibril elongation occurs by irreversible binding of Ab
monomers to the fibril ends. Here we present the full math-
ematical formulation of this model. We describe the temporal
evolution of the concentrations of Ab monomers and micelles
as well as the concentration and size distribution of fibrils.
This formulation enables deduction of the fundamental pa-
rameters of the model—e.g., the nucleation and elongation
rate constants kn and ke—from the time dependency of the
apparent diffusion coefficient measured by QLS. The theory
accurately represents the experimental observations for Ab
concentrations both below and above c*, the critical concen-
tration for Ab micelle formation. We suggest that the method
of QLS in combination with this theory can serve as a
powerful tool for understanding the molecular factors that
control Ab plaque formation.

A seminal pathogenetic event in Alzheimer disease (AD) is the
formation of fibrous amyloid plaques in the brain parenchyma
and vasculature (1). The primary protein component of
plaques is the amyloid b-protein (Ab) (2). In the plasma and
cerebrospinal f luid, amyloid b-protein exists primarily as a
soluble peptide 40 or 42 residues long (3). However, in the
senile plaque, Ab exists in the form of amyloid fibers (4). The
conversion of soluble Ab into insoluble fibers produces struc-
tures with neurotoxic activity (5). This observation, coupled
with accumulating genetic evidence which links increased
production of fibrillogenic forms of Ab with familial AD (6),
makes inhibiting fibrillogenesis an attractive therapeutic strat-
egy.

To properly target inhibitors, the structural stages and the
kinetics of Ab fibrillogenesis must be determined. In the past,
turbidity and thioflavin T binding have been used to quantify
levels of Ab aggregation and amyloidogenesis, respectively
(7–9). However, both methods detect only large polymeric
structures and provide no information on either nucleation or
elongation rate, the two key parameters controlling the kinet-
ics of Ab fibrillogenesis. Recently, however, static and dynamic
light scattering, sophisticated optical methods capable of mon-
itoring fibril length and structure, have been applied to the Ab
fibrillogenesis problem (10–12).

In a previous communication (12) we reported an experi-
mental study of the temporal evolution of Ab fibrils using
quasielastic light scattering (QLS). That study introduced an in
vitro model system which permits quantitative monitoring of

the kinetics of Ab fibrillogenesis and enables the determina-
tion of the numerical values of the nucleation rate and
elongation rate of the fibrils. Knowledge of these rate con-
stants is vital in the effort to understand the molecular factors
that control fibril creation and growth. This understanding can
serve as an invaluable guide in a search for the reagents
capable of affecting Ab fibrillization.

It is the purpose of this paper to present the equations for
the temporal evolution of fibril length distribution. These
equations provide a quantitative explanation of all the exper-
imental findings reported in our previous work (12). We shall
demonstrate how the biologically relevant parameters of Ab
fibrillogenesis can be deduced from QLS measurements. The
present mathematical analysis, taken together with our in vitro
model system and the light scattering method, provides a
powerful tool for the investigation of the molecular factors that
control the fibrillogenesis of Ab.

Kinetic Theory of Fibrillogenesis

A Model of Ab Fibrillogenesis. The most striking finding of
our experiments (12) is that the fibrillogenesis pathway differs
depending upon whether the total protein concentration, C, is
above or below a certain critical concentration, c*. For C . c*,
the initial rate of elongation is essentially independent of C and
when C .. c* the final size of fibrils also becomes independent
of C. On the other hand, for C , c*, the initial rate of
elongation is proportional to C, while the final size of fibrils
significantly exceeds that found for C . c* and appears to
increase as the concentration C approaches zero. To explain
these findings we have introduced in ref. 12 the kinetic scheme
illustrated in Fig. 1.

Two pathways of fibrillogenesis operate. These pathways
differ in the mechanism of nucleation. For C , c*, fibrils grow
on ‘‘seeds’’ initially present in the solution. For C . c*, we have
proposed the existence of micelles, which are in rapid equi-
librium with Ab monomers. These micelles provide domains of
high local protein concentration in which fibril nuclei form.
Elongation proceeds by attachment of free Ab monomers at
the fibril ends. In our model, the quantity c* is identified as the
critical micellar concentration of Ab monomers. Thus, for C .
c*, the monomer–micelle equilibrium maintains a nearly con-
stant concentration of free Ab monomers. This explains the
observation that the initial elongation rate is essentially inde-
pendent of the total Ab concentration. In addition, the mech-
anism of micelle-facilitated nucleation explains the weak de-
pendence of the final fibril size on concentration for C .. c*,
as will become clear from the forthcoming analysis.
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In our scheme, nuclei are produced continuously while
micelles are present. Thus, at any moment, there will be a
distribution of fibrils having different aggregation numbers.
From a knowledge of this distribution, all the macroscopic
properties of the solution can be derived.

Kinetic Equations for the Distribution of Fibril Aggregation
Numbers. To quantify the kinetic scheme shown in Fig. 1, we
introduce the time-dependent state variables M, Np, and c,
which are, respectively, the number concentration of micelles,
p-mer fibrils, and free Ab monomers. We further introduce
two structural parameters: m0 and n0. These are, respectively,
the numbers of monomers in a micelle and in a nucleus. The
time evolution of the system is determined by the numerical
values of two kinetic parameters, kn and ke. The nucleation rate
kn is the average number of nuclei produced by a single micelle
per unit time. The number of monomers in a nucleus may in
principle be distributed about the number n0. However, this
initial uncertainty is small in comparison with the large final
fibril aggregation number. Thus, in the interest of simplicity,
we shall assume that all nuclei consist of n0 monomers. The
elongation constant ke is the coefficient of proportionality
between the number of monomers attached per unit time to
each fibril and the concentration c of free Ab monomers in
solution.

The time derivative of the concentration of p-mer fibrils, Ṅp,
is given by

Ṅp 5 ckeNp21 2 ckeNp 1 knMdpn0
. [1]

The first term on the right hand side of Eq. 1 describes the
creation of the fibrils of size p from those of size p 2 1 by
monomer binding. The rate of such binding is proportional to
the concentration c of monomers. The second term accounts
for the reduction in p-mer concentration due to conversion
into (p 1 1)-mers. The third term describes the generation of
n0-mer nuclei from micelles. Eq. 1 assumes unidirectional fibril
growth: monomer binding is irreversible and breaking or
merging of fibrils is neglected. Preexisting seeds shall be
accounted as an initial condition Np(t 5 0).

The two state variables, c and M, are related according to the
principles of thermodynamic equilibrium between monomers
and micelles (13). Though generally there is a distribution of
micelles with aggregation numbers above the minimal number
m0, we will limit ourselves to a very simple two-state model for
micelle formation. In this model all micelles have the same
aggregation number m0, and it can be shown that

m0M 5 c* S c
c*D

m0

. [2]

Here the critical micellar concentration is connected to the
free energy of micellization, Dm0, by (14)

v#vc* 5 @m 0
21 exp(Dm0ykBT!]1y~m021!,

where v# is the molar volume of water. Both M and c are related
to the Nps by the conservation of mass condition:

c 1 m0M 1 N~1! 5 C. [3]

Here N(1)' ( pNp is the total amount of the protein in fibrillar
form.

Eqs. 1–3 constitute a complete set of coupled nonlinear
kinetic equations for the variables c, M, and each of the Np.
These equations may be solved and the temporal evolution of
the entire fibril distribution Np(t) may be determined provided
that the initial distribution Np(0) and the total concentration
C are known. One can then calculate experimentally observed
quantities, such as the scattered light intensity or the distri-
bution of hydrodynamic radii or diffusion coefficients.

Considerable mathematical simplification and physical in-
sight can be achieved by examining the equations governing
the temporal evolution of the moments of the fibril distribu-
tion. The kth moment N(k) of the distribution Np is defined as

N~k! 5 OpkNp. [4]

Clearly, the zeroth moment N(0) is the total number concen-
tration of fibrils of all sizes and the first moment N(1) is the total
number concentration of proteins found in all fibrils. Note also
that the total intensity of the scattered light is proportional to
the second moment N(2) of the fibril distribution, provided that
the fibril sizes are small compared with the wavelength of light.

Kinetic Equations for the Moments of the Fibril Distribu-
tion. Multiplying all Eq. 1 by pk and summing, we obtain a set
of recursive equations that define the temporal evolution of the
kth moment:

Ṅ~k! 5 knMn0
k 1 cke O

j50

k21

~ j
k!N~ j!. [5]

In this sequence of equations the first two are of particular
interest. For the zeroth moment Eq. 5 gives

Ṅ~0! 5 knM. [6]

Here we see that the total number concentration of fibrils
changes solely as a result of the process of nucleation from the
micelles. For the first moment Eq. 5 gives

Ṅ~1! 5 n0knM 1 ckeN~0!. [7]

Here we see that the total number concentration of proteins
in fibrillar form changes as a result of both the creation of
nuclei (first term on the right-hand side) and the binding of
monomers to the ends of each fibril.

Eqs. 6 and 7 together with Eqs. 2 and 3 form a closed set
of equations for the four state variables N(0), N(1), M, and c,
which can actually be solved analytically under the condition
that m0 .. 1. Furthermore, these two moments provide a
clear characterization of the principal features of fibril
distribution. In particular, the ratio of these moments gives
the average fibril aggregation number

p# 5 N~1!yN~0!. [8]

Kinetic Evolution of N(0), N(0), M, and p# . Let us denote the
total number concentration of protein in nonfibrillar form as
X:

X 5 m0M 1 c. [9]

FIG. 1. Schematic representation of the kinetic model for Ab
fibrillogenesis. Fibrillization of Ab protein is nucleation dependent.
Two pathways of fibril nucleation are proposed. One is fibril nucleation
on seeds. The second is nucleation within micelles, whose presence is
postulated provided that the peptide concentration exceeds the critical
micellar concentration c*. Micelles are in fast equilibrium with free
monomers at concentration c*. Nuclei are spontaneously formed out
of micelles with rate constant kn. Fibrils grow by binding monomers to
fibril ends with the rate proportional to the concentration of free
monomers. The corresponding rate constant is ke.
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Here, if we express M as a function of c according to Eq. 2 we
obtain

X
c*

5
c

c*
1 S c

c*D
m0

[10]

We shall assume that m0 .. 1. Analysis of Eq. 10 shows that
in this simple two-state model of micellization either M or c is
essentially constant in each of two domains of X, in particular

M < 0 for X , c*;

c < c* for X . c*. [11]

In each concentration domain the relevant Eq. 11 together
with Eqs. 3, 6, and 7 forms a complete set of linear equations
for variables N(0), N(1), M, and c, which can be solved analyt-
ically.

Consider first the case X , c* (regime I)—i.e., low initial
concentration of nonfibrillar protein; in this case, M > 0, hence
according to Eq. 6, N(0) remains equal to N0, the number of
fibrils and heterogeneous nuclei (‘‘seeds’’) preexisting in the
solution at t 5 0. Eq. 7 then reduces simply to

Ṅ~1! 5 ckeN0. [12]

In this regime N(1) and c are connected according to Eq. 3, by
N(1) 1 c 5 C. Thus Eq. 12 shows that the concentration c of
free monomers decreases exponentially with the time constant
(keN0)21 from its initial value c0, whereas the amount of
protein in fibrillar form grows according to

N~1!~t! 5 C 2 c0e2keN0t. [13]

Because N(0) remains constant and equal to N0, the mean
aggregation number p# 5 N(1)yN(0) exponentially approaches its
final value p# f 5 CyN0 as described in Eq. 13.

Let as now consider regime II, the case of high initial
concentration, X . c*. Here the concentration of monomers
remains essentially constant, c 5 c*, micelles are present, M .
0, and new fibrils are nucleated from micelles. Eliminating N(1)

and M in Eqs. 3, 6, and 7 in favor of N(0) gives the following
second-order differential equation:

N̈~0! 1 gṄ~0! 1 v0
2N~0! 5 0 [14]

with g 5 n0knym0 and v0
2 5 knkec*ym0. The initial conditions

at t 5 0 are

N~0! 5 N0, Ṅ~0! 5 knM~0! ; v0NM, [15]

where NM is defined as

NM 5
g

v0

m0M~0!

n0
. [16]

As we shall see, NM is the total number concentration of fibrils
that would ultimately emerge from micelles in the absence of
seeds. Therefore, for C .. c*, when most fibrils are nucleated
from micelles and the role of seeds is negligible, NM is related
to the final mean aggregation number p# f by C 5 p# fNM. In
addition, if C .. c*, then at the start of fibrillogenesis C >
m0M(0). Our experiments show dramatic growth of fibrils, i.e.,
p# f .. n0. Hence, m0M(0) .. n0NM, and we see from Eq. 16 that
gyv0 ,, 1. Thus we may neglect the second term in Eq. 14, and
the solution for N(0)(t), consistent with the initial conditions as
given by Eq. 15, may be expressed in the form

N~0!~t! 5 NTcos v0~T 2 t!, [17]

where

NT 5 ÎN0
2 1 NM

2. [18]

and

cos v0T 5
N0

NT
. [19]

Substituting Eq. 17 into Eqs. 6 and 3, we readily find that

N~1!~t! 5 ~C 2 c*! 2 SC 2 c* 2 N~1!~0!D sin v0~T 2 t!
sin v0T

. [20]

Here N(1)(0) is the number concentration of protein in the
seeds at t 5 0. At time T the micelles become exhausted—i.e.,
M(T) 5 0, as can be seen from Eqs. 6 and 17. After this time
T no further nucleation occurs and regime II terminates with
the final number concentration of fibrils being N(0)(T) 5 NT.
Thus, according to Eq. 18, when N0 5 0, NM is indeed the total
number concentration of fibrils in the absence of seeds.

For t . T regime I applies. N(0) remains equal to NT and N(1)

changes according to Eq. 13 with the starting monomer
concentration c0 being c*, i.e.,

N~1!~t! 5 C 2 c*e2keNT~t2T!. [21]

We may summarize the evolution of the fibril average aggre-
gation number in the case of high initial concentration, X . c*,
by the following expressions. In the domain 0 , t , T

p# ~t! 5 SC 2 c*
NM

DS sin v0T 2 sin v0~T 2 t!
cos v0~T 2 t! D

1 p# 0
tan v0~T 2 t!

tan v0T
, [22a]

where p#0 5 N(1)(0)yN0 is the mean number of proteins in a
seed. Furthermore, in the domain t . T we obtain p#(t) by
dividing Eq. 21 by N(0)(T) 5 NT, hence

p# ~t! 5
C 2 ~c*exp 2{keNT~t 2 T!%)

NT
. [22b]

According to Eqs. 22b and 18 the final average aggregation
number of fibrils is given by

p# f 5 CyÎN0
2 1 NM

2. [23]

We may now make a connection with the qualitative analysis
of fibril growth presented previously (12). In that analysis, we
assumed X .. c* and neglected seeds entirely (N0 5 0). In that
case according to Eq. 23 p# f 5 CyNM. From the definition of NM
in Eq. 16 we then find p# f 5 n0v0yg 5 (m0kec*ykn)1/2, as was
deduced previously. Also we see from Eq. 19 that when seeds
are absent T 5 py2v0 5 (py2)(m0yknkec*)1/2 regardless of the
initial protein concentration. This result coincides with our
previous (12) qualitative estimation of T apart from the factor
of py2.

QLS Spectroscopy as a Quantitative Assay for
Fibrillogenesis

Relationship Between Aggregation Number and Hydrody-
namic Radius for a Single Fibril. In our experiments we
monitor fibril growth using the method of QLS (15, 16). To
utilize the theory for the distribution of fibril lengths presented
above we must first establish a connection between the di-
mensions of an individual fibril and its diffusivity as measured
by QLS. The diffusion of a fibril is more complex than that of
a sphere. For long fibrils whose length L $ 1yq, where q is the
scattering vector, the temporal autocorrelation function of the
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scattered light no longer can be represented as a single
exponential even for a monodisperse solution (17). Indeed, no
explicit analytical expression is available for the autocorrela-
tion function even in the simple case of rigid rods. Neverthe-
less, it is possible to calculate and measure the first cumulant,
G > D# q2, and thus determine the mean diffusion coefficient D# .
To calculate the first cumulant we only need to know the form
of the diffusion equation for the scattering particles (18). In
this work we use the tensor of diffusion coefficients for a
cylinder as given by de la Torre and Bloomfield (19) to
calculate the first cumulant for a fibril of length L 5 pyl and
diameter d. Here l is the number of monomers per unit length
of the fibril. We take l 5 1.6 monomers per nm (10, 12).

It is conventional to express the first cumulant in terms of
the effective hydrodynamic radius, RH, according to the
Stokes–Einstein relation,

G# 5
kBT

6phRH
q2. [24]

Here h is solvent viscosity, T is the absolute temperature, and
RH is the radius of a sphere whose diffusion coefficient is the
same as the mean diffusion coefficient of the rigid rod in
question. In Fig. 2 we show RH as a function of p 5 lL for
several relevant values of d and q. As is seen from this figure,
the dependence of RH on p is insensitive to the variations in the
fibril diameter or wave vector q within the range of interest. In
our calculations we neglected fibril f lexibility, which could be
characterized by a persistence length of several hundred
nanometers (11). This leads to an underestimation of the
length of those fibrils that are comparable to, or longer than,
the persistence length. This effect could be accounted for by
some rescaling of the RH(p) curve in Fig. 2. It is clear, however,
that such rescaling will not impair our ability to assess the
effect of variation in solution conditions or in the protein
structure on the kinetic constants ke and kn. Therefore, for the
sake of simplicity we shall model Ab fibrils as rigid rods and
use Fig. 2 as the calibration curve for hydrodynamic radius of
a p-mer fibril.

Connection Between Observed Mean Hydrodynamic Ra-
dius R# H(t) and the Predictions of the Kinetic Theory of
Fibrillogenesis. Knowing the hydrodynamic radius of p-mer,
RH(p), we now can make a connection between the apparent
hydrodynamic radius R# H determined from the QLS data and
the distribution of fibrils Np which our theory predicts for a
particular set of kinetic parameters. Hence we may deduce the
kinetic parameters which correspond to the observed evolu-
tion of R# H. Taking into account the scattering both by micelles
and by the distribution of Ab fibrils with appropriate weighting
factors, R# H can be related to Np by

1

R# H
5

~m0
2MyRM! 1 O p2a~p!NpyRH~p!

m0
2M 1 O p2a~p!Np

. [25]

Here RM is the radius of a micelle. The contribution of each
p-mer fibril is weighted by its scattered intensity, which is
proportional to p2a, where a(qL) is the form factor of a rod of
length L 5 pyl. The corresponding weighting factor for a
micelle is m0

2. Since a micelle is small, i.e., qRM ,, 1, we take
its form factor to be unity.

We see from Eq. 25 that, to rigorously apply our kinetic
model for the analysis of QLS data, the temporal evolution of
the whole fibril distribution function, Np(t), must be computed
numerically. However, if we neglect the polydispersity in the
fibril distribution, we can take advantage of the simple ana-
lytical theory developed in the previous section. Denoting
hydrodynamic radius calculated in this approximation as R̃H,
from Eq. 25 we get

1

R̃H
5

m0
2MyRM 1 p# 2a~p# !N~0!yRH~p# !

m0
2M 1 p# 2a~p# !N~0! . [26]

Here M(t), N(0)(t), and p#(t) 5 N(1)(t)yN(0)(t) have already
been found analytically. As the fibrils grow, the relative
contribution of micelles decreases and Eq. 26 reduces simply
to R̃H 5 RH(p#). We now wish to show that, within the
accuracy of our experiments, we can replace the rigorous
quantity R# H by the approximate quantity R̃H. For this

FIG. 2. Calibration curve relating the hydrodynamic radius RH of
a monodisperse solution of rigid rods as a function of the rod length
L, or the number of Ab monomers p. The results are shown for three
different rod diameters, d, and for scattering vectors q 5 11.8yl0,
corresponding to 90° scattering in aqueous solution for light having
wavelength l0 of 633, 514, and 488 nm.

FIG. 3. Temporal evolution of R# H(t) (dashed lines) for a polydis-
perse distribution of fibrils, as computed numerically, and the appro-
priate R̃H(t) (solid lines) as calculated using the simple analytic theory
for p#(t), for the following values of the total monomer concentration:
curves a, C 5 5c*; curves b, C 5 0.5c*; and curves c, C 5 0.1c*. The
parameters of the model used were N0 5 0.001C, kn 5 2.4 3 1026

sec21, ke 5 90 M21zsec21, m0 5 25, c* 5 0.1 mM, and n0 5 10.
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purpose we solved numerically Eqs. 1–3 for Np(t). We then
computed R# H according to Eq. 25, using the calibration curve
in Fig. 2 for R# H(p). The results of this computation for a
number of initial concentrations and for a set of kinetic
parameters consistent with our experiments are shown in
Fig. 3. Here the solid curves represent the time evolution of
the apparent hydrodynamic radius R# H(t) as computed nu-
merically. They are to be compared with the dashed curves
representing the corresponding approximate R̃H(t) found
analytically.

Our simplified treatment of monomer–micelle equilibrium
neglects the existence of some micelles for X , c*. Conse-
quently, the simple theory underestimates the number of fibrils
at low concentration. This leads to overestimation of fibril size.
Nevertheless, the difference between the rigorous and the
simplified analysis for realistic values of kinetic parameters is
significantly less than experimental error. We therefore shall
use in further discussions the simple analytical version, since it
provides a clear insight into the factors that govern the
fibrillogenesis process.

Significance of the Parameters of the Model and Their
Deduction from Experimental Data. The parameters intro-
duced previously can be divided naturally into three groups.
The first group consists of structural parameters. These are the
linear density l and the fibril diameter d. The second group of
parameters has to do with fibril creation from micelles (c*, m0,
n0, and kn) or upon preexisting seeds (N0). Finally, the
parameter ke describes the rate constant for the binding of
monomers to the ends of an individual fibril.

The structural parameters are needed solely to relate the
fibril aggregation number p to the length L of a fibril and its
observed hydrodynamic radius RH. The parameters d and l
have been estimated by other workers (10, 12). A readjustment
in these parameters would result simply in a rescaling of the
calibration curve in Fig. 2. The second group of parameters
determines the number of fibrils and therefore the final
aggregation number pf. Knowledge of these parameters facil-
itates the choice of conditions under which fibrillogenesis can
be reproducibly controlled. The nucleation parameters also
provide useful information on the intermolecular interactions

between Ab monomers in the micelle. The remaining param-
eter ke, which describes the rate of fibril growth, provides
insight into the molecular factors that control monomer bind-
ing to each fibril end. From a practical viewpoint ke, is a
valuable quantitative measure of the effectiveness of putative
growth inhibitors.

We now demonstrate how our theoretical analysis permits
an evaluation of the above parameters using the experimental
data on RH reported previously (12). We consider first the
simpler case C , c*. Here no additional fibrils are nucleated
during fibrillogenesis and the distribution of fibril sizes is
determined primarily by the stochastic (Poisson) nature of
monomer binding to fibril ends. Thus, the width of distribution
Np(t) grows as =p̄, and whatever polydispersity may exist
initially in the distribution of seed sizes can be neglected as
soon as the fibril size significantly exceeds that of the largest
seed. The relative width of distribution decreases in time as
1yp#1/2. Under these conditions the mean aggregation number
p#(t) provides a sufficient representation of the extent of
fibrillogenesis. We can deduce p#(t) directly from the experi-
mentally measured mean hydrodynamic radius RH(t) by using
the calibration curve in Fig. 2. The two most useful quantities
to be derived from p#(t) are dp#ydt at t 5 0 and pf, the fibril final
size. With these we can immediately find N0 and ke according
to N0 5 Cypf and ke 5 (1yC)(dp#ydt).

We now consider the domain C . c*, where the parameters
related to nucleation, namely kn and c*, play a central role. In
this domain micelles are present, and the fibril distribution is
the result of a continual emergence of new fibrils from
micelles. As we demonstrated above, the fibril distribution, in
practice, proves to be sufficiently narrow, so that R# H(t) can be
satisfactorily represented in terms of p#(t) and the micellar
concentration M(t) by Eq. 26. This equation accounts for the
scattering from both micelles and fibrils. As the fibrils emerge
and grow in size the micellar contribution to RH becomes
negligible. Then, nearly linear growth of the apparent hydro-
dynamic radius with time is observed. Here we can again use
the calibration curve in Fig. 2 to convert RH(t) into p#(t) and
thereby determine the rate of fibril elongation, (dp#ydt) 5 kec*.
Since ke is known from C , c* data, this permits a deduction

FIG. 4. Comparison between temporal evolution of the samples with Ab concentration 1.16 mM (A) and 0.47 mM (B) observed experimentally
in 0.1 M HCl (1) and calculated using the simple analytic theory (solid curves) with the following parameters: kn 5 2.4 3 1026 sec21, ke 5 90
M21zsec21, m0 5 25, c* 5 0.1 mM, and n0 5 10. One percent of the protein was assumed to be in the form of seeds: n0N0 5 0.01C.
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of the critical micellar concentration c*. Knowing kec*, the
remaining parameter, kn, may be deduced from the mean final
aggregation number p# f (Eq. 23). In the limit C .. c* we expect
that nucleation within micelles is the dominating source of
fibrils, i.e., NM .. N0, and that practically all the peptide is
initially in micellar form: m0M(0) > C. Under these conditions
p# f 5 ((kec*(m0ykn))1/2 and hence the ratio knym0 can be found
from p# f. An estimation of m0 can be obtained by comparing the
initial (Ii) and final (If) values of the scattered light intensity.
Because Ii ; m0

2M(0) 5 m0C and If ; a(p# f)p# f
2N(0)(`) 5

a(p# f)p# fC, it follows that m0 5 a(p# f)p# f(IiyIf). We found exper-
imentally p# f 5 480, (IiyIf) 5 (1y7). Using then a(p# f) 5 0.4 for
the form factor, we may estimate that m0 5 25.

Analysis of our previously reported experimental data (12)
produces the following values of the theoretical parameters: ke
5 90 M21zsec21, c* 5 0.1 mM, and kn 5 2.4 3 1026 sec21. Thus,
for C . c*, fibrils grow at a rate of 0.5 monomer per min, and
new fibril nucleation occurs approximately once in 5 days per
micelle. The predicted and the observed temporal evolution of
RH(t) for two samples at C . c* is shown in Fig. 4. In this
comparison we used Eq. 26, where p#(t) is given by Eqs. 22a and
22b. M(t) for t , T is derived by substituting Eq. 17 into Eq.
6. This figure shows that our model successfully represents the
essential features of the kinetics of fibrillogenesis. Note that,
in the vicinity of the knee of the RH(t) curve, the experimental
points fall below the theoretical prediction. This discrepancy is
most likely a consequence of the oversimplified two-state
model employed to describe monomer–micelle equilibrium. In
fact, the data suggest that there may be a distribution of
micellar sizes around the mean aggregate number m0.

Conclusions

On the basis of experimental studies using QLS spectroscopy
we previously proposed (12) a kinetic model for the in vitro
fibrillogenesis of Ab. According to this model: (i) fibrillogen-
esis requires the existence of nuclei, which are either produced
from micelles of Ab or are initially present in the solution as
seeds; (ii) fibril elongation takes place by the irreversible
binding of the monomeric protein to the fibril ends. In the
present communication we have presented a detailed mathe-
matical analysis of the model, giving a full description of the
temporal evolution of the distribution of the fibril sizes. The
theory enables a quantitative deduction of the rate constants
for fibril nucleation (kn), fibril elongation (ke), and the con-
centration of seeds (N0). We have shown that this theory can
satisfactorily describe the observed time course of fibrillogen-

esis for Ab concentration both below and above c*, the critical
concentration for Ab micelle formation.

This work enables the following advances. First, by combin-
ing the experimental method of QLS with the present kinetic
theory we obtain a powerful assay method for the quantitative
determination of the fundamental kinetic coefficients kn and
ke, which control fibrillogenesis. Second, the discovery and
quantitation of nucleation within micelles gives us means to
control the concentration of nuclei that initiate fibrillogenesis.
These two advances now place on a solid quantitative footing
further examination of the various biochemical and physiologic
factors that affect the formation of Ab fibrils. This knowledge
can be highly valuable for the discovery and optimization of
pharmacological agents that can inhibit Ab plaque formation.
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